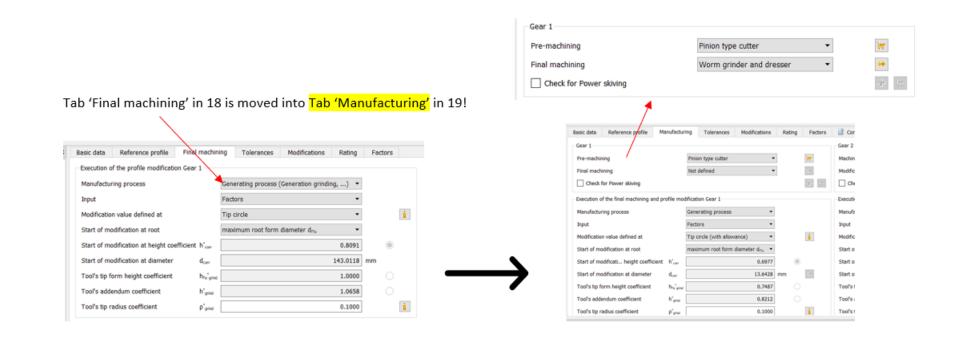
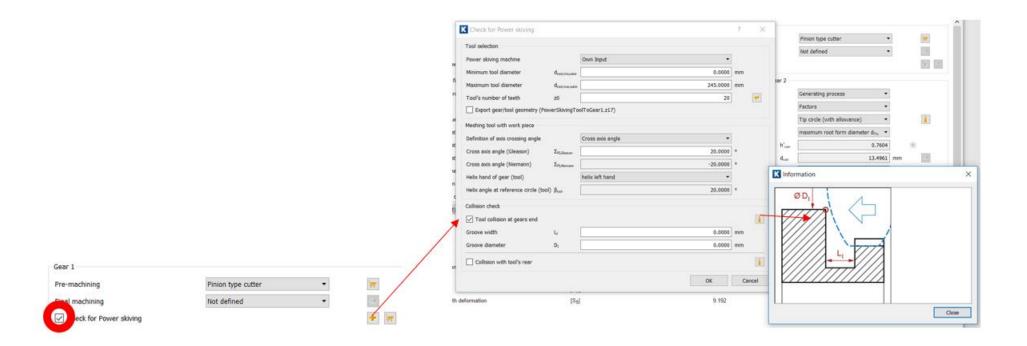
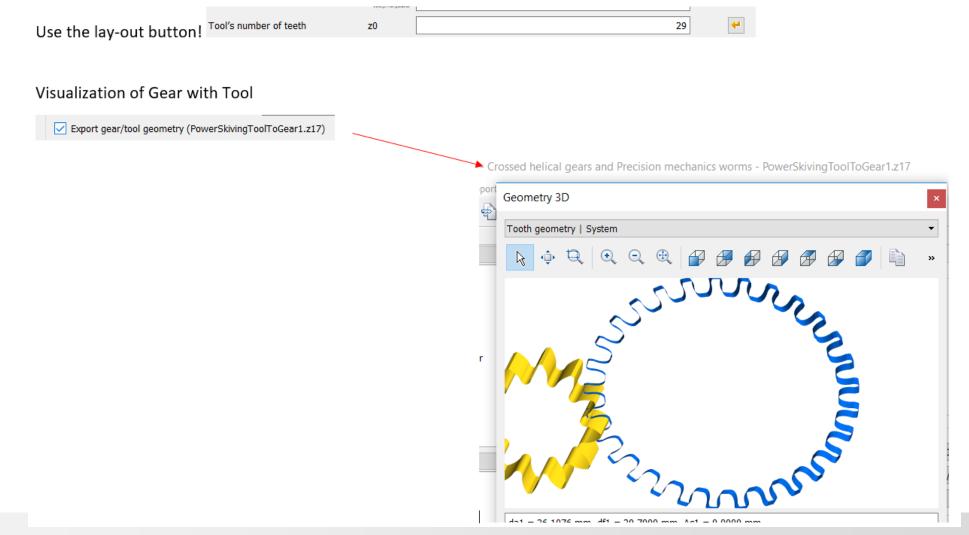
New Features in Gears Part 1

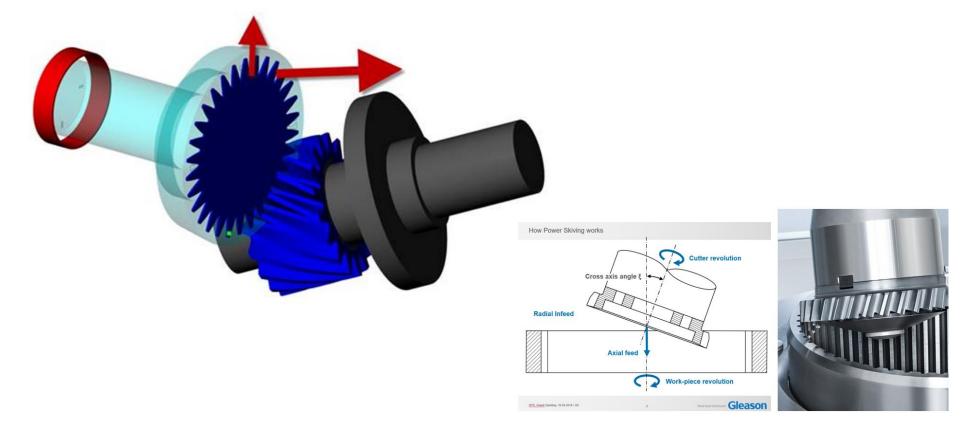

KUM International, October 23, 2019 U.Kissling

1 / October 23, 2019 / KUM International 2019 / Dr. Ulrich Kissling


Manufacturing knowhow in KISSsoft


KISSsoft

2


Power Skiving Check added (Honing is planned)

KISSsoft

Check with examples from Gleason in Studen

Implemented in Fine-sizing

K Fine Sizing

- 🗆

Conditio	ns I	Condition	ıs II	Conditi	ons III	Resu	ults	Gra	aphics											
Nr. ^	m _n [mm]	a _n [°]		β [°]		Z 1		Z ₂	x ₁		d _{a2} [mm]	ε		ε _β	εγ	i	PSK ₂	PSKz ₂	
	1	0.600		22.500		0.000		32	-50	D D	0.800	29.341		0.975	0.000	0.97	5 -1.562	Yes		21
	2	0.600		22.500		0.000		33	-5:	1	0.800	29.941		0.980	0.000	0.98) -1.545	Yes		21
	3	0.600		22.500		0.000		34	-52	2	0.800	30.541		0.984	0.000	0.984	4 -1.529	Yes		21
	4	0.600		22.500		0.000		35	-53	3	0.800	31.141		0.988	0.000	0.98	3 -1.514	Yes		21
	5	0.600		25.000		0.000		30	-47	7	0.146	27.169		1.459	0.000	1.45	-1.567	Yes		21
	6	0.600		25.000		0.000		31	-48	8	0.133	27.754		1.464	0.000	1.46	4 -1.548	Yes		21
	7	0.600		25.000		0.000		32	-49	9	0.120	28.339		1.469	0.000	1.46	-1.531	Yes		21
	8	0.600		25.000		0.000		33	-50	0	0.108	28.924		1.473	0.000	1.47	3 -1.515	Yes		29
	9	0.600		27.500		0.000		30	-47	7	-0.005	26.988		1.408	0.000	1.40	3 -1.567	No		0
1	0	0.600		27.500		0.000		30	-47	7	0.095	27.108		1.378	0.000	1.37	3 -1.567	No		(
1	1	0.600		27.500		0.000		31	-48	8	-0.017	27.573		1.411	0.000	1.41	1 -1.548	No		0
1	2	0.600		27.500		0.000		31	-48	8	0.083	27.693		1.382	0.000	1.38	2 -1.548	No		0
1	3	0.600		27.500		0.000		32	-49	9	-0.030	28.158		1.414	0.000	1.414	4 -1.531	No		(
1	4	0.600		27.500		0.000		32	-49	9	0.070	28.278		1.386	0.000	1.38	5 -1.531	No		-
1	5	0.600		27.500		0.000		33	-50	D	-0.043	28.743		1.416	0.000	1.41	5 -1.515	No		
1	.6	0.600		27.500		0.000		33	-50	D	0.057	28.863		1.389	0.000	1.38	9 -1.515	No		(
1	.7	0.600		30.000		0.000		30	-47	7	-0.147	26.817		1.358	0.000	1.35	3 -1.567	Yes		27
1	8	0.600		30.000		0.000		30	-47	7	-0.047	26.937		1.334	0.000	1.334	4 -1.567	Yes		2
1	9	0.600		30.000		0.000		30	-47	7	0.053	27.057		1.312	0.000	1.31	2 -1.567	Yes		27
2	20	0.600		30.000		0.000		31	-48	8	-0.159	27.402		1.360	0.000	1.36	0 -1.548	Yes		27
2	21	0.600		30.000		0.000		31	-48	8	-0.059	27.522		1.337	0.000	1.33	7 -1.548	Yes		27
	22	0.600		30.000		0.000		31	-48	В	0.041	27.642		1.315	0.000	1.31	5 -1.548	Yes		27
2	23	0.600		30.000		0.000		32	-49	9	-0.170	27.989		1.361	0.000	1.36	1 -1.531	Yes		27
2	24	0.600		30.000		0.000		32	-49	9	-0.070	28.109		1.339	0.000	1.33	9 -1.531	Yes		27
2	25	0.600		30.000		0.000		32	-49	9	0.030	28.229		1.317	0.000	1.31	7 -1.531	Yes		27
2	26	0.600		30.000		0.000		33	-50	D	-0.182	28.575		1.362	0.000	1.36	2 -1.515	Yes		27

Double planetary stage in 4-Gear-Chain & Fine sizing for 4-Gear-Chain

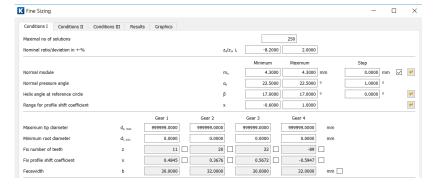
Speed n ₁	15000.0000 1/min 🔿 🕂	K Planet carrier	?	×
Drawing System		Calculate as double planetar Planet carrier speed n Planet gear OK	y stage 500.0000 ⊦ Gear 3 ▼ Cand	
New example added: New license: Z1c In the report:	Supplementary data		c	clearance13 r _{a2} r _{a2} r _{a4} r _{a3} clearance24 r _{a3} r _{a4} r _{a5} r _a
	This gear stage is suitable for a planet epicycl Angle between center point, gear2-gear1-gear3 Distance between tip circles gear1-gear3 (mm) Distance between tip circles gear2-gear4 (mm)	3 (°) [αM213]) [clearance13]	er. 33.128 64.152 74.856	

KISSsoft

Double planetary stage in 4-Gear-Chain & Fine sizing for 4-Gear-Chain

New: 4-Gear-Chain with Fine-Sizing

Center distances used are defined in the 'Basic data' tab.

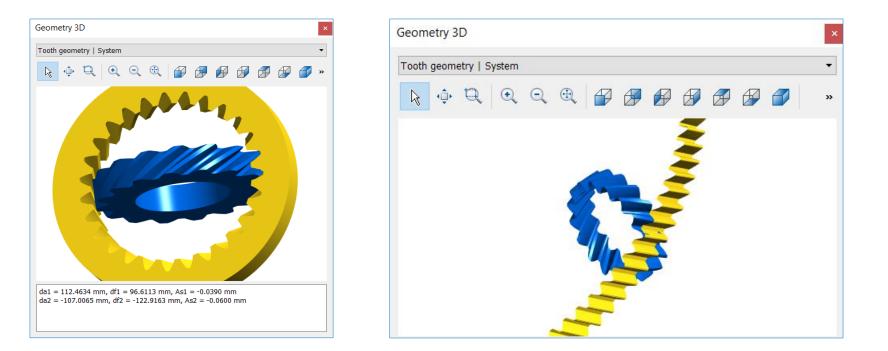

Exception, when special feature for double planetary is activated. Then dv4 is given, center distances are varied.

Size as double planetary stage (all cente	r distances vary)
---	-------------------

Nominal ratio z₃/z₂

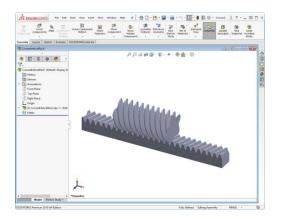
V-Circle internal gear

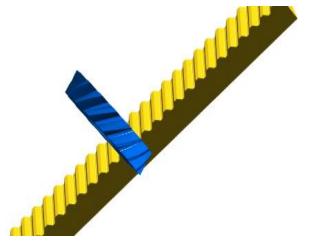
	aM ₂₁₃ [°]	CL ₁₃ [mm]	CL ₂₄ [mm]	
	12.284	73.970	82.534	
	12.284	73.110	83.394	
Additional	25.162	70.204	77.454	
	25.162	69.344	78.314	
results for	25.162	68.484	79.174	
	33.368	65.579	73.243	
double	33.368	64.719	74.103	
planatary:	39.917	60.954	69.048	
planetary:	39.917	60.094	69.908	
	45.548	56.328	64.856	
	45.548	55.468	65.716	

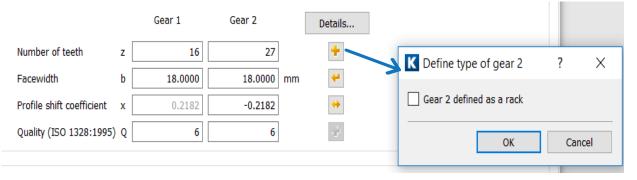

KISSsoft

8 / October 23, 2019 / KUM International 2019 / Dr. Ulrich Kissling

Crossed helical gear pairs with internal gear & with rack

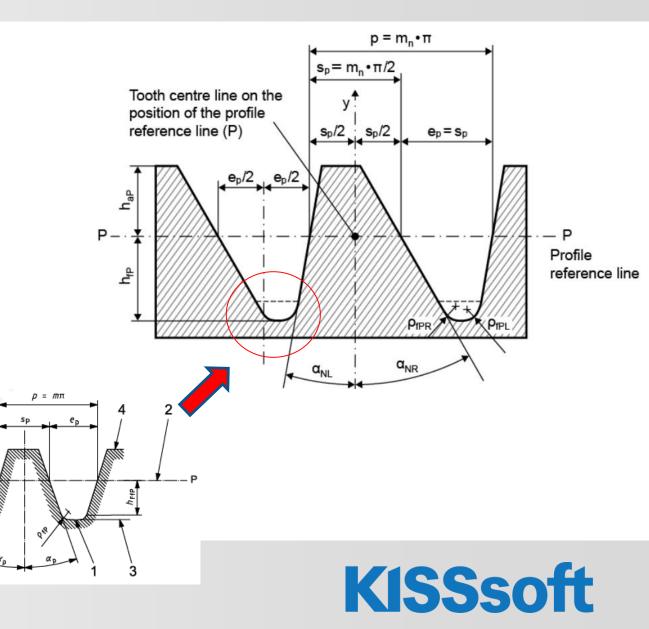

Crossed helical gear pairs with an internal gear. No strength calculation available (no known rule exists). Pinion can also be a spur gear.





Crossed helical gear pairs with internal gear & with rack

Pinion with Rack. Strength as for a gear with >1000 teeth.


Asymmetric gears

Asymmetric gears:

- LTCA (Stiffness acc. Weber-Banaschek adapted)
- A sizing function for the gear root radius / tool tip radius of asymmetric gears was added.

This module is no longer a beta version but some functionality is still limited for asymmetric gears:

- No premanufacturing
- Only for cylindrical gears
- Only ISO 6336 and VDI plastic calculation available
- No rough and fine sizing
- No operating backlash calculation
- No modification sizing

New in DIN

Draft: Calculation of load capacity of cylindrical worm with globoid gear wheel with rectangular crossing axes

	DEUTSCHE NORM	Entwurf	September 2018	4
	DIN 3996		DIN	
ICS 21.200	Entwurf		is 2018-12-24 als Ersatz für 12-09	
rechtwinkl	eitsberechnung von Zylinder-Schne lig kreuzenden Achsen Fload capacity of cylindrical worm gear pairs	0		Calculation of the eff by a new method.
	1 J J J J J J J J J J J J J J J J J J J		0	Oehler, M.: FVA-Forschungsvorhaben Nr. 7

ficiency replaced

29/I. Schneckengetriebewirkungsgrade. FVA-Heft Nr. ъ 1226 (2017)

New in ISO

Calculation of load capacity of spur and helical gears	International Standard	Technical Specification	Technical Report
Part 1: Basic principles, introduction and general influence factors	x		
Part 2: Calculation of surface durability (pitting)	x		
Part 3: Calculation of tooth bending strength	х		
Part 4: Calculation of tooth flank fracture load capacity		х	
Part 5: Strength and quality of materials	х		
Part 6: Calculation of service life under variable load	х		
Part 20: Calculation of scuffing load capacity (also applicable to bevel and hypoid gears) — Flash temperature method (replaces: ISO/TR 13989-1)		х	
Part 21: Calculation of scuffing load capacity (also applicable to bevel and hypoid gears) — Integral temperature method (replaces: ISO/TR 13989-2)		x	
Part 22: Calculation of micropitting load capacity (replaces: ISO/TR 15144-1)		х	
Part 30: Calculation examples for the application of ISO 6336 parts 1,2,3,5			x
Part 31: Calculation examples of micropitting load capacity (replaces: ISO/TR 15144-2)			x

Cylindrical gears

Some ISO standards are renamed:


<u>Scuffing ISO</u> TR 13989-1/2 -> ISO TS 6336-20/21 Micropitting ISO15144 -> ISO TS 6336-22 Tooth flank fracture ISO DTR 19042 -> ISO TS 6336-4 New edition of ISO6336-1, 2, 3 and 6 will be published at the end of 2019. In V2019 of KISSsoft only on request available.

KISSsoft

6336-3 (Bending):

- Tooth form factor YF always calculated with xE.i (smallest thickness)
- External gears, produced with a hob: No change
- For all internal gears, and external gears produced with a shaper cutter, method acc. VDI2737 is used.

Form factors Yr, Ys	Following formulae of Standard (normal)
Teeth contract stiffeees	Following formulae of Standard (normal) using graphical method
 Limited pitting is permitted 	if internal toothing according to VDI2737

6336-3 (Bending):

- Helix angle factor Y β changed, much bigger for $\beta > 10^{\circ}$: σ F0 increased
- New: The factor $f\epsilon$ considers the influence of load distribution between the teeth ($f\epsilon = 0.63 \dots 1.0$) : σ F0 decreased

-> σF0 for $\beta >= 20^{\circ}$ significantly increased ! -> σF0 for $\beta = 0..10^{\circ}$ and $\epsilon_{\alpha} >= 2.0$ significantly decreased !

$$\sigma_{\rm F0} = \frac{F_{\rm t}}{b \ m_{\rm n}} Y_{\rm F} \cdot Y_{\rm S} \cdot Y_{\beta} \cdot Y_{\rm B} \cdot Y_{\rm DT}$$

$$Y_{\rm F} = \frac{\frac{6 \ h_{\rm Fe}}{m_{\rm n}} \cos \alpha_{\rm Fen}}{\left(\frac{s_{\rm Fn}}{m_{\rm n}}\right)^2 \cos \alpha_{\rm n}} \cdot f_{\varepsilon}$$

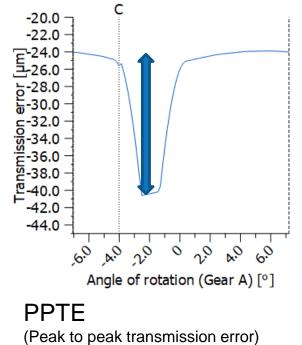
> Example:

Right flank with tip relief Ca varied in 6 steps from 18 to 48 µm, cross varied with length factor in 6 steps from 0.5*mn to 5.5*mn. So 36 variants are checked.

Additionally torque is varied in 3 steps from 41.6 to 100 % of nominal torque. So 36*3 = 108 LTCA calculations are performed.

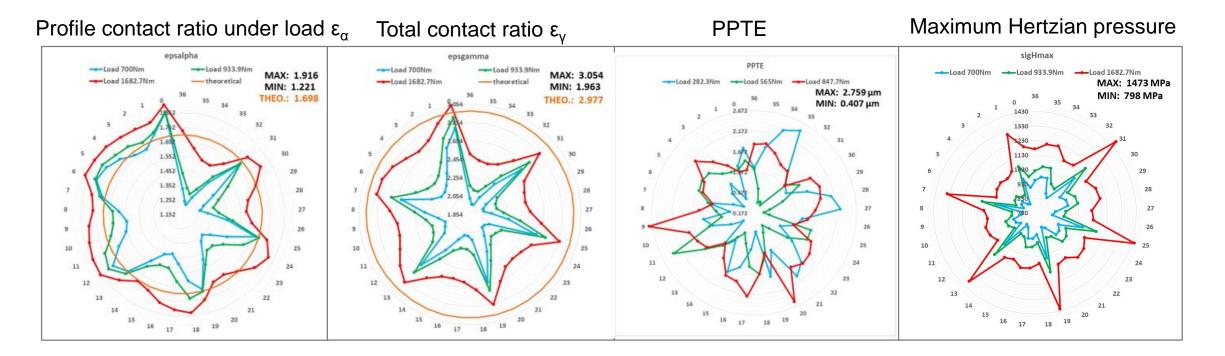
Mod	Modifications sizing - \Box X													
Conditions II Results Graphic I Graphic II														
No.	Gear	Synchror	Flank	Type of modification	Number of steps	Value (min) [µm]	Value (max) [µm]	Factor 1 (min)	Factor 1 (max)					
1	Gear 1	1	right	Tip relief, progressive	6	18.0000	48.0000	0.5000	5.5000					
2	Gear 2	1	right	Tip relief, progressive	6	18.0000	48.0000	0.5000	5.5000					

Example: Tooth number 30:43, module 4 mm, helix angle 17° and a pressure angle on the right flank of 31° (face width 40 mm, torque on pinion 1682 Nm, speed 2180 rpm).



Influence of manufacturing tolerances

Optimisation for noise


 Compensate primarily for tooth bending to avoid contact shock and to reduce the transmission error (PPTE).

Overview of the main results for 36 profile modification variants at 3 torque levels.

KISSsoft

Solution 8 can be a "good compromise" for min, mean and max load.

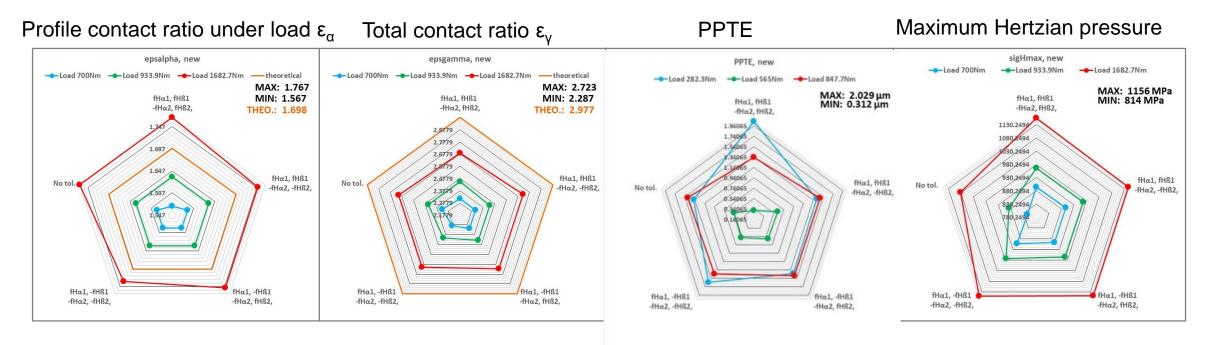
18 / October 23, 2019 / KUM International 2019 / Dr. Ulrich Kissling

Influence of manufacturing tolerances

- Very important to consider manufacturing tolerances in the selection process of modifications
- Check of the stability of a chosen modification variant when profile and lead errors are added

Conditions I Base modifications (are not varied)

No.	Gear	Flank	Type of modification	Value [µm]	Factor 1
1	Gear 1	both	Tip relief, arc-like	42.1000	1.9658
2	Gear 1	both	Crowning	10.0000	
3	Gear 2	both	Tip relief, arc-like	42.1000	1.9630
4	Gear 2	both	Crowning	10.0000	


KISSsoft

Condi	tions I	Conditions I	II R	Results	Graphic I	Graphic II				
No. Gear Synchror Flank Type of modification					Number of steps	Value (min) [µm]	Value (max) [µm]			
1	Gear 1	1	both	Pressure	e angle modifi	ication (value)		2	-6.0000	6.0000
2	Gear 1	2	both	Helix an	Helix angle modification, parallel (value)			2	-7.0000	7.0000

Inputs for the simulation of manufacturing errors to check the 'stability' of a proposed solution.

Influence of manufacturing tolerances

Simulation of manufacturing errors to check the 'stability' of a proposed solution. 'No tol' on the left side is the theoretical solution without any error.

Overall, the increase in the range of 10% of the critical parameters is acceptable. The proposed modifications can be considered appropriate for the manufacturing process.

KISSsoft

New papers about cylindrical gears

VDI-Conference 2019 (Munich)

- Combining gear design with manufacturing process decisions, U. Kissling, U. Stolz, A. Türich.
- Derivation of tooth stiffness of asymmetric gears for loaded tooth contact analysis, B. Mahr, A. Pogacnik, A. Langheinrich.
- Comparison of Strength Ratings of Plastic Gears by VDI 2736 and JIS B 1759, In Vision of Building a New International Standard, I. Bae, U. Kissling.

FTM-Meeting 2019 (Detroit)

- Sizing of profile modifications for asymmetric gears, U. Kissling.

Others

- Efficient layout process of cylindrical gears with manufacturing constraints, I.Tsikur.

Thank you for your attention!

Sharing Knowledge

KISSsoft AG, A Gleason Company Rosengartenstrasse 4, 8608 Bubikon, Switzerland T. +41 55 254 20 50, info@KISSsoft.AG, www.KISSsoft.AG

22 / October 23, 2019 / KUM International 2019 / Dr. Ulrich Kissling